Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(4): 72, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430405

RESUMO

BACKGROUND: Inhibition of the adenosine 2A receptor (A2AR) diminishes the immunosuppressive effects of adenosine and may complement immune-targeting drugs. This phase 2 study evaluated the A2AR antagonist AZD4635 in combination with durvalumab or oleclumab in patients with metastatic castration-resistant prostate cancer. METHODS: Patients with histologically/cytologically confirmed disease progressing within 6 months on ≥ 2 therapy lines were randomly assigned to either Module 1 (AZD4635 + durvalumab) or Module 2 (AZD4635 + oleclumab). Primary endpoints were objective response rate per RECIST v1.1 and prostate-specific antigen (PSA) response rate. Secondary endpoints included radiological progression-free survival (rPFS), overall survival, safety, and pharmacokinetics. RESULTS: Fifty-nine patients were treated (Module 1, n = 29; Module 2, n = 30). Median number of prior therapies was 4. One confirmed complete response by RECIST (Module 1) and 2 confirmed PSA responses (1 per module) were observed. The most frequent adverse events (AEs) possibly related to AZD4635 were nausea (37.9%), fatigue (20.7%), and decreased appetite (17.2%) in Module 1; nausea (50%), fatigue (30%), and vomiting (23.3%) in Module 2. No dose-limiting toxicities or treatment-related serious AEs were observed. In Module 1, AZD4635 geometric mean trough concentration was 124.9 ng/mL (geometric CV% 69.84; n = 22); exposures were similar in Module 2. In Modules 1 and 2, median (95% CI) rPFS was 2.3 (1.6 -3.8) and 1.5 (1.3- 4.0) months, respectively. Median PFS was 1.7 versus 2.3 months for patients with high versus low blood-based adenosine signature. CONCLUSION: In this heavily pretreated population, AZD4635 with durvalumab or oleclumab demonstrated minimal antitumor activity with a manageable safety profile. CLINICAL TRIAL: gov identifier: NCT04089553.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Antígeno Prostático Específico , Antineoplásicos/uso terapêutico , Fadiga , Adenosina , Náusea/tratamento farmacológico
2.
Eur Urol Oncol ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38105142

RESUMO

BACKGROUND AND OBJECTIVE: Checkpoint inhibitor therapy (CPI) has demonstrated survival benefits in urothelial carcinoma (UC); however, not all patients benefit from CPI due to resistance. Combining sitravatinib, a multitargeted receptor tyrosine kinase inhibitor of TYRO3, AXL, and MERTK (TAM) receptors and VEGFR2, with CPI may improve antitumor responses. Our objective was to assess the efficacy and safety of sitravatinib plus nivolumab in patients with advanced/metastatic UC. METHODS: The 516-003 trial (NCT03606174) is an open-label, multicohort phase 2 study evaluating sitravatinib plus nivolumab in patients with advanced/metastatic UC enrolled in eight cohorts depending on prior treatment with CPI, platinum-based chemotherapy (PBC), or antibody-drug conjugate (ADC). Overall, 244 patients were enrolled and treated with sitravatinib plus nivolumab (median follow-up 14.1-38.2 mo). Sitravatinib (free-base capsules 120 mg once daily [QD] or malate capsule 100 mg QD) plus nivolumab (240 mg every 2 wk/480 mg every 4 wk intravenously). KEY FINDINGS AND LIMITATIONS: The primary endpoint was objective response rate (ORR; RECIST v1.1). The secondary endpoints included progression-free survival (PFS) and safety. The Predictive probability design and confidence interval methods were used. Among patients previously treated with PBC, ORR, and median PFS were 32.1% and 3.9 mo in CPI-naïve patients (n = 53), 14.9% and 3.9 mo in CPI-refractory patients (n = 67), and 5.4% and 3.7 mo in CPI- and ADC-refractory patients (n = 56), respectively. Across all cohorts, grade 3 treatment-related adverse events (TRAEs) occurred in 51.2% patients and grade 4 in 3.3%, with one treatment-related death (cardiac failure). Immune-related adverse events occurred in 50.4% patients. TRAEs led to sitravatinib/nivolumab discontinuation in 6.1% patients. CONCLUSIONS AND CLINICAL IMPLICATIONS: Sitravatinib plus nivolumab demonstrated a manageable safety profile but did not result in clinically meaningful ORRs in patients with advanced/metastatic UC in the eight cohorts studied. PATIENT SUMMARY: In this study, the combination of two anticancer drugs, sitravatinib and nivolumab, resulted in manageable side effects but no meaningful responses in patients with bladder cancer.

3.
HCA Healthc J Med ; 4(3): 253-256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434904

RESUMO

Introduction: Locally invasive colon carcinoma comprises a small fraction of the incidence of colon carcinoma. Complications, such as perforation and obstruction, can occur in less than 0.5% of cases and often present differently based on location. Case Presentation: We present a case of an 85-year-old woman who presented with an acute abdominal wall abscess which was caused by perforation of transverse colon carcinoma. Conclusion: En-bloc resection increases 5-year survival, and adjuvant chemotherapy reduces the risk of recurrence in patients with stage II resectable colon carcinoma.

4.
Res Sq ; 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37090599

RESUMO

Principles governing the encoding, storage, and updating of memories in cortical networks are poorly understood. In retrosplenial cortex (RSC), cells respond to the animal's position as it navigates a real or virtual (VR) linear track. Position correlated cells (PCCs) in RSC require an intact hippocampus to form. To examine whether PCCs undergo pattern completion and remapping like hippocampal cells, neuronal activity in RSC or CA1 was recorded using two-photon calcium imaging in mice running on VR tracks. RSC and CA1 PCC activity underwent global and rate remapping depending on the degree of change to familiar environments. The formation of position correlated fields in both regions required stability across laps; however, once formed, PCCs became robust to object destabilization, indicating pattern completion of the previously formed memory. Thus, memory and remapping properties were conserved between RSC and CA1, suggesting that these functional properties are transmitted to cortex to support memory functions.

6.
mBio ; 13(6): e0283822, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445695

RESUMO

Despite recent advances in our understanding of pathogenic access to the central nervous system (CNS), the mechanisms by which intracellular pathogens disseminate within the dense cellular network of neural tissue remain poorly understood. To address this issue, longitudinal analysis of Toxoplasma gondii dissemination in the brain was conducted using 2-photon imaging through a cranial window in living mice that transgenically express enhanced green fluorescent protein (eGFP)-claudin-5. Extracellular T. gondii parasites were observed migrating slowly (1.37 ± 1.28 µm/min) and with low displacement within the brain. In contrast, a population of highly motile infected cells transported vacuoles of T. gondii significantly faster (6.30 ± 3.09 µm/min) and with a higher displacement than free parasites. Detailed analysis of microglial dynamics using CX3CR1-GFP mice revealed that T. gondii-infected microglia remained stationary, and infection did not increase the extension/retraction of microglial processes. The role of infiltrating immune cells in shuttling T. gondii was examined by labeling of peripheral hematopoietic cells with anti-CD45 antibody. Infected CD45+ cells were found crawling along the CNS vessel walls and trafficked T. gondii within the brain parenchyma at significantly higher speeds (3.35 ± 1.70 µm/min) than extracellular tachyzoites. Collectively, these findings highlight a dual role for immune cells in neuroprotection and in facilitating parasite dissemination within the brain. IMPORTANCE T. gondii is a foodborne parasite that infects the brain and can cause fatal encephalitis in immunocompromised individuals. However, there is a limited understanding of how the parasites disseminate through the brain and evade immune clearance. We utilized intravital imaging to visualize extracellular T. gondii tachyzoites and infected cells migrating within the infected mouse brain during acute infection. The infection of motile immune cells infiltrating the brain from the periphery significantly increased the dissemination of T. gondii in the brain compared to that of free parasites migrating using their own motility: the speed and displacement of these infected cells would enable them to cover nearly 1 cm of distance per day! Among the infiltrating cells, T. gondii predominantly infected monocytes and CD8+ T cells, indicating that the parasite can hijack immune cells that are critical for controlling the infection in order to enhance their dissemination within the brain.


Assuntos
Toxoplasma , Camundongos , Animais , Toxoplasma/fisiologia , Linfócitos T CD8-Positivos , Encéfalo/patologia , Sistema Nervoso Central , Monócitos
7.
Curr Biol ; 32(20): 4538-4546.e5, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36152631

RESUMO

Despite the recent emergence of multiple cellular and molecular strategies to restore vision in retinal disorders, it remains unclear to what extent central visual circuits can recover when retinal defects are corrected in adulthood. We addressed this question in an Lrat-/- mouse model of Leber congenital amaurosis (LCA) in which retinal light sensitivity and optomotor responses are partially restored by 9-cis-retinyl acetate administration in adulthood. Following treatment, two-photon calcium imaging revealed increases in the number and response amplitude of visually responsive neurons in the primary visual cortex (V1). In particular, retinoid treatment enhanced responses from the ipsilateral eye, restoring the normal balance of eye-specific responses in V1. Additionally, the treatment rescued the modulation of cortical responses by arousal. These findings illustrate the significant plasticity of the adult central visual system and underscore the therapeutic potential of retinoid administration for adults with retinal diseases.


Assuntos
Degeneração Retiniana , Camundongos , Animais , Degeneração Retiniana/tratamento farmacológico , Retinoides/farmacologia , Retinoides/uso terapêutico , cis-trans-Isomerases , Cálcio , Retina , Proteínas do Olho
8.
JAMA Oncol ; 8(10): 1411-1418, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048457

RESUMO

Importance: Dysregulated metabolism is a hallmark of renal cell carcinoma (RCC). Glutaminase is a key enzyme that fuels tumor growth by converting glutamine to glutamate. Telaglenastat is an investigational, first-in-class, selective, oral glutaminase inhibitor that blocks glutamine utilization and downstream pathways. Preclinically, telaglenastat synergized with cabozantinib, a VEGFR2/MET/AXL inhibitor, in RCC models. Objective: To compare the efficacy and safety of telaglenastat plus cabozantinib (Tela + Cabo) vs placebo plus cabozantinib (Pbo + Cabo). Design, Setting, and Participants: CANTATA was a randomized, placebo-controlled, double-blind, pivotal trial conducted at sites in the US, Europe, Australia, and New Zealand. Eligible patients had metastatic clear-cell RCC following progression on 1 to 2 prior lines of therapy, including 1 or more antiangiogenic therapies or nivolumab plus ipilimumab. The data cutoff date was August 31, 2020. Data analysis was performed from December 2020 to February 2021. Interventions: Patients were randomized 1:1 to receive oral cabozantinib (60 mg daily) with either telaglenastat (800 mg twice daily) or placebo until disease progression or unacceptable toxicity. Main Outcomes and Measures: The primary end point was progression-free survival (Response Evaluation Criteria in Solid Tumors version 1.1) assessed by blinded independent radiology review. Results: A total of 444 patients were randomized: 221 to Tela + Cabo (median [range] age, 61 [21-81] years; 47 [21%] women and 174 [79%] men) and 223 to Pbo + Cabo (median [range] age, 62 [29-83] years; 68 [30%] women and 155 [70%] men). A total of 276 (62%) patients had received prior immune checkpoint inhibitors, including 128 with prior nivolumab plus ipilimumab, 93 of whom had not received prior antiangiogenic therapy. Median progression-free survival was 9.2 months for Tela + Cabo vs 9.3 months for Pbo + Cabo (HR, 0.94; 95% CI, 0.74-1.21; P = .65). Overall response rates were 31% (69 of 221) with Tela + Cabo vs 28% (62 of 223) with Pbo + Cabo. Treatment-emergent adverse event (TEAE) rates were similar between arms. Grade 3 to 4 TEAEs occurred in 160 patients (71%) with Tela + Cabo and 172 patients (79%) with Pbo + Cabo and included hypertension (38 patients [17%] vs 40 patients [18%]) and diarrhea (34 patients [15%] vs 29 patients [13%]). Cabozantinib was discontinued due to AEs in 23 patients (10%) receiving Tela + Cabo and 33 patients (15%) receiving Pbo + Cabo. Conclusions and Relevance: In this randomized clinical trial, telaglenastat did not improve the efficacy of cabozantinib in metastatic RCC. Tela + Cabo was well tolerated with AEs consistent with the known risks of both agents. Trial Registration: ClinicalTrials.gov Identifier: NCT03428217.


Assuntos
Carcinoma de Células Renais , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/mortalidade , Nivolumabe/uso terapêutico , Ipilimumab/uso terapêutico , Glutaminase/uso terapêutico , Método Duplo-Cego , Inibidores de Checkpoint Imunológico , Glutamina/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Glutamatos/uso terapêutico
9.
Sci Rep ; 12(1): 12779, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896554

RESUMO

Microglia contain multiple mechanisms that shape the synaptic landscape during postnatal development. Whether the synaptic changes mediated by microglia reflect the developmental refinement of neuronal responses in sensory cortices, however, remains poorly understood. In postnatal life, the development of increased orientation and spatial frequency selectivity of neuronal responses in primary visual cortex (V1) supports the emergence of high visual acuity. Here, we used the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 to rapidly and durably deplete microglia in mice during the juvenile period in which increased orientation and spatial frequency selectivity emerge. Excitatory and inhibitory tuning properties were measured simultaneously using multi-photon calcium imaging in layer II/III of mouse V1. We found that microglia depletion generally increased evoked activity which, in turn, reduced orientation selectivity. Surprisingly, microglia were not required for the emergence of high spatial frequency tuned responses. In addition, microglia depletion did not perturb cortical binocularity, suggesting normal depth processing. Together, our finding that orientation and high spatial frequency selectivity in V1 are differentially supported by microglia reveal that microglia are required normal sensory processing, albeit selectively.


Assuntos
Fator Estimulador de Colônias de Macrófagos/metabolismo , Microglia/patologia , Receptores de Fator Estimulador de Colônias/fisiologia , Sinapses/fisiologia , Córtex Visual/fisiologia , Animais , Camundongos , Microglia/fisiologia , Neurônios/fisiologia , Estimulação Luminosa/métodos , Sinapses/patologia , Córtex Visual/patologia
10.
Elife ; 112022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35191835

RESUMO

The membrane protein TREM2 (Triggering Receptor Expressed on Myeloid cells 2) regulates key microglial functions including phagocytosis and chemotaxis. Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD). Because abnormalities in Ca2+ signaling have been observed in several AD models, we investigated TREM2 regulation of Ca2+ signaling in human induced pluripotent stem cell-derived microglia (iPSC-microglia) with genetic deletion of TREM2. We found that iPSC-microglia lacking TREM2 (TREM2 KO) show exaggerated Ca2+ signals in response to purinergic agonists, such as ADP, that shape microglial injury responses. This ADP hypersensitivity, driven by increased expression of P2Y12 and P2Y13 receptors, results in greater release of Ca2+ from the endoplasmic reticulum stores, which triggers sustained Ca2+ influx through Orai channels and alters cell motility in TREM2 KO microglia. Using iPSC-microglia expressing the genetically encoded Ca2+ probe, Salsa6f, we found that cytosolic Ca2+ tunes motility to a greater extent in TREM2 KO microglia. Despite showing greater overall displacement, TREM2 KO microglia exhibit reduced directional chemotaxis along ADP gradients. Accordingly, the chemotactic defect in TREM2 KO microglia was rescued by reducing cytosolic Ca2+ using a P2Y12 receptor antagonist. Our results show that loss of TREM2 confers a defect in microglial Ca2+ response to purinergic signals, suggesting a window of Ca2+ signaling for optimal microglial motility.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Difosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Receptores Imunológicos/metabolismo , Receptores Purinérgicos/metabolismo
11.
Exp Neurol ; 350: 113965, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34973965

RESUMO

This paper explores the potential of rAAV2-retro to deliver gene modifying cargoes to the cells of origin of multiple pathways that are interrupted by spinal cord injury (SCI), summarizing data from previous studies and new data from additional experiments. rAAV-retro exhibits uniquely robust and reliable long-distance retrograde transport from pre-terminal axons and synapses back to neuronal bodies. Previous studies have documented that various AAV-based genetic modifications can enable axon regeneration after SCI, but these have targeted the cells of origin of one pathway at a time. In contrast, rAAV-retro can simultaneously transduce large numbers of neurons of origin of multiple spinal pathways with single injections into the spinal cord. Our initial studies use RosatdTomato and double transgenic PTENf/f; RosatdTomato mice in which transfection with rAAV-retro/Cre deletes PTEN and activates tdT expression in the same neurons. Injections of rAAV-retro/Cre into the cervical, thoracic and lumbar spinal cord led to topographically specific retrograde transduction in cortical motoneurons and neurons in subcortical regions that give rise to different spinal pathways. Our results confirm and extend previous studies indicating selective transduction of neurons that terminate at the level of the injection with minimal retrograde transduction of axons in transit to lower levels. We document feasibility of using rAAV-retro expressing shRNA against PTEN along with a GFP reporter (rAAV-retro-shPTEN/GFP) to effectively knock down PTEN in multiple populations of neurons, which can be used in any species. Some limitations and caveats of currently available rAAV-retros are discussed. Together, our results support the potential applications of rAAV-retro for AAV-based gene-modifications for SCI.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/genética , Vias Neurais/crescimento & desenvolvimento , Traumatismos da Medula Espinal/terapia , Animais , Axônios , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Regeneração Nervosa/genética , Vias Neurais/lesões , PTEN Fosfo-Hidrolase/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley
12.
Elife ; 102021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34423781

RESUMO

Microglia, the brain's resident myeloid cells, play central roles in brain defense, homeostasis, and disease. Using a prolonged colony-stimulating factor 1 receptor inhibitor (CSF1Ri) approach, we report an unprecedented level of microglial depletion and establish a model system that achieves an empty microglial niche in the adult brain. We identify a myeloid cell that migrates from the subventricular zone and associated white matter areas. Following CSF1Ri, these amoeboid cells migrate radially and tangentially in a dynamic wave filling the brain in a distinct pattern, to replace the microglial-depleted brain. These repopulating cells are enriched in disease-associated microglia genes and exhibit similar phenotypic and transcriptional profiles to white-matter-associated microglia. Our findings shed light on the overlapping and distinct functional complexity and diversity of myeloid cells of the CNS and provide new insight into repopulating microglia function and dynamics in the mouse brain.


Assuntos
Ventrículos Laterais/fisiologia , Microglia/fisiologia , Substância Branca/fisiologia , Animais , Encéfalo , Modelos Animais de Doenças , Homeostase , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/citologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo
13.
Nat Commun ; 12(1): 862, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558487

RESUMO

The adult brain lacks sensitivity to changes in the sensory environment found in the juvenile brain. The transplantation of embryonic interneurons has been shown to restore juvenile plasticity to the adult host visual cortex. It is unclear whether transplanted interneurons directly mediate the renewed cortical plasticity or whether these cells act indirectly by modifying the host interneuron circuitry. Here we find that the transplant-induced reorganization of mouse host circuits is specifically mediated by Neuregulin (NRG1)/ErbB4 signaling in host parvalbumin (PV) interneurons. Brief visual deprivation reduces the visual activity of host PV interneurons but has negligible effects on the responses of transplanted PV interneurons. Exogenous NRG1 both prevents the deprivation-induced reduction in the visual responses of host PV interneurons and blocks the transplant-induced reorganization of the host circuit. While deletion of ErbB4 receptors from host PV interneurons blocks cortical plasticity in the transplant recipients, deletion of the receptors from the donor PV interneurons does not. Altogether, our results indicate that transplanted embryonic interneurons reactivate cortical plasticity by rejuvenating the function of host PV interneurons.


Assuntos
Transplante de Células , Interneurônios/fisiologia , Interneurônios/transplante , Plasticidade Neuronal/fisiologia , Córtex Visual/embriologia , Animais , Diferenciação Celular , Dominância Ocular , Feminino , Masculino , Camundongos Endogâmicos C57BL , Neuregulina-1/metabolismo , Parvalbuminas/metabolismo , Receptor ErbB-4/metabolismo , Privação Sensorial , Transdução de Sinais , Sinapses/fisiologia
14.
J Neurosci Methods ; 350: 109044, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33340556

RESUMO

BACKGROUND: The regulation of cerebral blood flow is critical for normal brain functioning, and many physiological and pathological conditions can have long-term impacts on cerebral blood flow. However, minimally invasive tools to study chronic changes in animal models are limited. NEW METHOD: We developed a minimally invasive surgical technique (cyanoacrylate skull, CAS) allowing us to image cerebral blood flow longitudinally through the intact mouse skull using laser speckle imaging. RESULTS: With CAS we were able to detect acute changes in cerebral blood flow induced by hypercapnic challenge. We were also able to image cerebral blood flow dynamics with laser speckle imaging for over 100 days. Furthermore, the relative cerebral blood flow remained stable in mice from 30 days to greater than 100 days after the surgery. COMPARISON WITH EXISTING METHODS: Previously, achieving continuous long-term optical access to measure cerebral blood flow in individual vessels in a mouse model involved invasive surgery. In contrast, the CAS technique presented here is relatively non-invasive, as it allows stable optical access through an intact mouse skull. CONCLUSIONS: The CAS technique allows researcher to chronically measure cerebral blood flow dynamics for a significant portion of a mouse's lifespan. This approach may be useful for studying changes in blood flow due to cerebral pathology or for examining the therapeutic effects of modifying cerebral blood flow in mouse models relevant to human disease.


Assuntos
Circulação Cerebrovascular , Imagem Óptica , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Hemodinâmica , Camundongos , Crânio/diagnóstico por imagem , Crânio/cirurgia
15.
Cereb Cortex ; 31(5): 2322-2344, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33350438

RESUMO

Rostro-caudal specificity of corticospinal tract (CST) projections from different areas of the cortex was assessed by retrograde labeling with fluorogold and retrograde transfection following retro-AAV/Cre injection into the spinal cord of tdT reporter mice. Injections at C5 led to retrograde labeling of neurons throughout forelimb area of the sensorimotor cortex and a region in the dorsolateral cortex near the barrel field (S2). Injections at L2 led to retrograde labeling of neurons in the posterior sensorimotor cortex (hindlimb area) but not the dorsolateral cortex. With injections of biotinylated dextran amine (BDA) into the main sensorimotor cortex (forelimb region), labeled axons terminated selectively at cervical levels. With BDA injections into caudal sensorimotor cortex (hindlimb region), labeled axons passed through cervical levels without sending collaterals into the gray matter and then elaborated terminal arbors at thoracic sacral levels. With BDA injections into the dorsolateral cortex near the barrel field, labeled axons terminated at high cervical levels. Axons from medial sensorimotor cortex terminated primarily in intermediate laminae and axons from lateral sensorimotor cortex terminated primarily in laminae III-V of the dorsal horn. One of the descending pathways seen in rats (the ventral CST) was not observed in most mice.


Assuntos
Córtex Motor/fisiologia , Neurônios/patologia , Tratos Piramidais/fisiologia , Medula Espinal/fisiologia , Animais , Axônios/fisiologia , Membro Posterior/patologia , Membro Posterior/fisiologia , Masculino , Camundongos Endogâmicos BALB C , Córtex Motor/patologia , Neurônios/fisiologia , Tratos Piramidais/patologia , Medula Espinal/patologia
16.
J Neurosci ; 41(7): 1470-1488, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33376158

RESUMO

The mammalian visual cortex contains multiple retinotopically defined areas that process distinct features of the visual scene. Little is known about what guides the functional differentiation of visual cortical areas during development. Recent studies in mice have revealed that visual input from the two eyes provides spatiotemporally distinct signals to primary visual cortex (V1), such that contralateral eye-dominated V1 neurons respond to higher spatial frequencies than ipsilateral eye-dominated neurons. To test whether binocular visual input drives the differentiation of visual cortical areas, we used two-photon calcium imaging to characterize the effects of juvenile monocular deprivation (MD) on the responses of neurons in V1 and two higher visual areas, LM (lateromedial) and PM (posteromedial). In adult mice of either sex, we find that MD prevents the emergence of distinct spatiotemporal tuning in V1, LM, and PM. We also find that, within each of these areas, MD reorganizes the distinct spatiotemporal tuning properties driven by the two eyes. Moreover, we find a relationship between speed tuning and ocular dominance in all three areas that MD preferentially disrupts in V1, but not in LM or PM. Together, these results reveal that balanced binocular vision during development is essential for driving the functional differentiation of visual cortical areas. The higher visual areas of mouse visual cortex may provide a useful platform for investigating the experience-dependent mechanisms that set up the specialized processing within neocortical areas during postnatal development.SIGNIFICANCE STATEMENT Little is known about the factors guiding the emergence of functionally distinct areas in the brain. Using in vivo Ca2+ imaging, we recorded visually evoked activity from cells in V1 and higher visual areas LM (lateromedial) and PM (posteromedial) of mice. Neurons in these areas normally display distinct spatiotemporal tuning properties. We found that depriving one eye of normal input during development prevents the functional differentiation of visual areas. Deprivation did not disrupt the degree of speed tuning, a property thought to emerge in higher visual areas. Thus, some properties of visual cortical neurons are shaped by binocular experience, while others are resistant. Our study uncovers the fundamental role of binocular experience in the formation of distinct areas in visual cortex.


Assuntos
Diferenciação Celular/fisiologia , Visão Binocular/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Algoritmos , Animais , Mapeamento Encefálico , Dominância Ocular/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/crescimento & desenvolvimento , Neocórtex/fisiologia , Plasticidade Neuronal , Estimulação Luminosa , Privação Sensorial , Percepção Espacial/fisiologia , Visão Monocular/fisiologia , Campos Visuais
17.
ACS Chem Biol ; 15(12): 3099-3105, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33222436

RESUMO

Profiling RNA expression in a cell-specific manner continues to be a grand challenge in biochemical research. Bioorthogonal nucleosides can be utilized to track RNA expression; however, these methods currently have limitations due to background and incorporation of analogs into undesired cells. Herein, we design and demonstrate that uracil phosphoribosyltransferase can be engineered to match 5-vinyluracil for cell-specific metabolic labeling of RNA with exceptional specificity and stringency.


Assuntos
RNA/metabolismo , Mutação , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Especificidade por Substrato , Uracila/análogos & derivados , Uracila/metabolismo
18.
Curr Biol ; 30(18): 3591-3603.e8, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32822611

RESUMO

Subanesthetic ketamine evokes rapid and long-lasting antidepressant effects in human patients. The mechanism for ketamine's effects remains elusive, but ketamine may broadly modulate brain plasticity processes. We show that single-dose ketamine reactivates adult mouse visual cortical plasticity and promotes functional recovery of visual acuity defects from amblyopia. Ketamine specifically induces downregulation of neuregulin-1 (NRG1) expression in parvalbumin-expressing (PV) inhibitory neurons in mouse visual cortex. NRG1 downregulation in PV neurons co-tracks both the fast onset and sustained decreases in synaptic inhibition to excitatory neurons, along with reduced synaptic excitation to PV neurons in vitro and in vivo following a single ketamine treatment. These effects are blocked by exogenous NRG1 as well as PV targeted receptor knockout. Thus, ketamine reactivation of adult visual cortical plasticity is mediated through rapid and sustained cortical disinhibition via downregulation of PV-specific NRG1 signaling. Our findings reveal the neural plasticity-based mechanism for ketamine-mediated functional recovery from adult amblyopia.


Assuntos
Ambliopia/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Neuregulina-1/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Parvalbuminas/metabolismo , Córtex Visual/efeitos dos fármacos , Ambliopia/metabolismo , Ambliopia/patologia , Animais , Feminino , Masculino , Camundongos , Neuregulina-1/genética , Neurônios/efeitos dos fármacos , Neurônios/patologia , Sinapses/efeitos dos fármacos , Sinapses/patologia , Córtex Visual/patologia
19.
J Neurosci ; 40(3): 585-604, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31767678

RESUMO

Study of the neural deficits caused by mismatched binocular vision in early childhood has predominantly focused on circuits in the primary visual cortex (V1). Recent evidence has revealed that neurons in mouse dorsolateral geniculate nucleus (dLGN) can undergo rapid ocular dominance plasticity following monocular deprivation (MD). It remains unclear, however, whether the long-lasting deficits attributed to MD during the critical period originate in the thalamus. Using in vivo two-photon Ca2+ imaging of dLGN afferents in superficial layers of V1 in female and male mice, we demonstrate that 14 d MD during the critical period leads to a chronic loss of binocular dLGN inputs while sparing response strength and spatial acuity. Importantly, MD leads to profoundly mismatched visual tuning properties in remaining binocular dLGN afferents. Furthermore, MD impairs binocular modulation, reducing facilitation of responses of both binocular and monocular dLGN inputs during binocular viewing. As predicted by our findings in thalamic inputs, Ca2+ imaging from V1 neurons revealed spared spatial acuity but impaired binocularity in L4 neurons. V1 L2/3 neurons in contrast displayed deficits in both binocularity and spatial acuity. Our data demonstrate that critical-period MD produces long-lasting disruptions in binocular integration beginning in early binocular circuits in dLGN, whereas spatial acuity deficits first arise from circuits further downstream in V1. Our findings indicate that the development of normal binocular vision and spatial acuity depend upon experience-dependent refinement of distinct stages in the mammalian visual system.SIGNIFICANCE STATEMENT Abnormal binocular vision and reduced acuity are hallmarks of amblyopia, a disorder that affects 2%-5% of the population. It is widely thought that the neural deficits underlying amblyopia begin in the circuits of primary visual cortex. Using in vivo two-photon calcium imaging of thalamocortical axons in mice, we show that depriving one eye of input during a critical period in development chronically impairs binocular integration in thalamic inputs to primary visual cortex. In contrast, visual acuity is spared in thalamic inputs. These findings shed new light on the role for developmental mechanisms in the thalamus in establishing binocular vision and may have critical implications for amblyopia.


Assuntos
Privação Sensorial/fisiologia , Tálamo/crescimento & desenvolvimento , Tálamo/fisiologia , Visão Binocular/fisiologia , Visão Monocular/fisiologia , Visão Ocular/fisiologia , Ambliopia/fisiopatologia , Animais , Mapeamento Encefálico , Feminino , Corpos Geniculados/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Percepção Espacial , Acuidade Visual/fisiologia , Córtex Visual/fisiologia
20.
Proc Natl Acad Sci U S A ; 116(49): 24796-24807, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31727842

RESUMO

Brain infection by the parasite Toxoplasma gondii in mice is thought to generate vulnerability to predation by mechanisms that remain elusive. Monocytes play a key role in host defense and inflammation and are critical for controlling T. gondii However, the dynamic and regional relationship between brain-infiltrating monocytes and parasites is unknown. We report the mobilization of inflammatory (CCR2+Ly6Chi) and patrolling (CX3CR1+Ly6Clo) monocytes into the blood and brain during T. gondii infection of C57BL/6J and CCR2RFP/+CX3CR1GFP/+ mice. Longitudinal analysis of mice using 2-photon intravital imaging of the brain through cranial windows revealed that CCR2-RFP monocytes were recruited to the blood-brain barrier (BBB) within 2 wk of T. gondii infection, exhibited distinct rolling and crawling behavior, and accumulated within the vessel lumen before entering the parenchyma. Optical clearing of intact T. gondii-infected brains using iDISCO+ and light-sheet microscopy enabled global 3D detection of monocytes. Clusters of T. gondii and individual monocytes across the brain were identified using an automated cell segmentation pipeline, and monocytes were found to be significantly correlated with sites of T. gondii clusters. Computational alignment of brains to the Allen annotated reference atlas [E. S. Lein et al., Nature 445:168-176 (2007)] indicated a consistent pattern of monocyte infiltration during T. gondii infection to the olfactory tubercle, in contrast to LPS treatment of mice, which resulted in a diffuse distribution of monocytes across multiple brain regions. These data provide insights into the dynamics of monocyte recruitment to the BBB and the highly regionalized localization of monocytes in the brain during T. gondii CNS infection.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Monócitos/metabolismo , Toxoplasmose/diagnóstico por imagem , Toxoplasmose/metabolismo , Animais , Antígenos Ly/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...